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ABSTRACT

We develop and test implicit methods for

unstructured mesh computations. The approximate

system which arises from the Newton-linearisation of

the nonlinear evolution operator is solved by using the

preconditioned GMRES (Generalised Minimum Resi-

dual) technique. We investigate three different precon-
ditioners, namely, the incomplete LU factorisation

(ILU), block diagonal factorisation and the symmetric
successive over-relaxation (SSOR). The preconditioners

have been optimised to have good vectorisation pro-

perties. We also study SSOR and ILU themselves as
iterative schemes. The various methods are compared

over a wide range of problems. Ordering of the unk-

nowns, which affects the convergence of these sparse
matrix iterative methods, is also investigated. Results

are presented for inviscid and turbulent viscous calcu-

lations on single and multi-element airfoil

configurations using globally and adaptively generated
meshes.

INTRODUCTION

Impressive progress has been made in the area of

algorithms for unstructured meshes in the last few

years. Much attention has been focussed on improving
the spatial discretisation operator ([1-3])which has

evolved to a very high degree of sophistication. Usually

explicit methods, such as Runge-Kutta schemes, have
been used to march the solution to steady state. Some

acceleration techniques such as local time stepping and

residual averaging have also been implemented in this

context. However, for large problems as well as stiff

turbulent flow problems, the convergence rates of such

methods degrade rapidly, resulting in inefficient solu-
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tion techniques. In order to speed up convergence and

propagate information more rapidly throughout the

domain, more sophisticated multigrid or implicit

methods are required.

The unstructured multigrid algorithm of Mav-

ripils [4] has been shown to produce efficient steady-
state solutions for both the Euler and Navier-Stokes

equations. In this approach, convergence acceleration is

achieved by time-stepping on coarser unstructured

meshes which may be generated independently from
the fine mesh on which the equations are originally

discretised. The principle behind this algorithm is that
the errors associated with the high frequencies are

annihilated by a carefully chosen smoother (a multi-

stage Runge-Kutta scheme) while the errors associated

with the low frequencies are annihilated on the coarser

grids where these frequencies manifest themselves as

high frequencies. The disadvantage of such an

approach lies in the fact that the acceleration is

achieved through the use of additional geometric con-

structions (i.e. user generated coarse meshes) which is
often viewed as less desirable than for example an alge-

braic multigrid approach. A fully implicit method,

wherein the system of linear equations is solved by
direct methods, was developed and tested by Venka-

takrishnan and Barth [5]. While providing a robust
solution technique, direct methods are plagued by

nonoptimal computational complexity and high storage

requirements. Furthermore, for nonlinear systems with
inexact linearisations, since the linear system of equa-

tions which arises at each time step need not be solved

to a high degree of precision in order to maintain

favorable overall (nonlinear) convergence rates, itera-

tire implicit solvers may be employed.

Iterative implicit methods for unstructured prob-
lems have been investigated by Whitaker et. al [6],

Hassan et al. [7], Struijs et al. [8] and Batina [9]. Ven-

katakrishnan [10] has tested preconditioned iterative
methods on structured grid problems with special

emphasis on vector performance issues. He concluded
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_hat some of these methods are quite competitive with

other existing methods, while being readily applicable

to unstructured grids. In this work we extend some of

the ideas from [10] to unstructured grids.

Spatial dlscretisatlon is achieved using

piecewise-linear Rulte-elements. For dissipative terms,
a blend of Laplacinn and blharmoulc terms is

employed, the Lapiacian term acting in the vicinity of
shocks. The use of this particular dlscretilation affords

a relatively simple construction of the linear system,

while enabling a straight-forward comparison of the

implicit schemes with the previously developed mul-

tigrid strategy. For turbulent flow calculations, the
unstructured mesh implementation of the Baldwin-

Lomax algebraic model developed in [11] is incor-
porated. This model is not differentiable, and is there-

fore treated explicitly in the present scheme. The

implicit methods investigated in this work are not res-

tricted to any scheme in particular, and in the future

may be applied to more complex upwind discretisa-

tions and more sophisticated multi-equation turbulence
models.

IMPLICIT SCHEME

In non-dlmensional conservative form, the full
Navier-Stokes equations read

aw M= a_ _V_'_M,. "af,,, a.___.g,I-- + -- + .____ + (I)
at ax ay Re. tax

where w represents the solution vector (conserved vari-
ables), and fe and ge represent the Cartesian com-

ponents of the convective fluxes which are non linear

functions of the w variables, and fv and g, are the
Cartesian components of the viscous fluxes, which are

functions of both the w variables, and the first deriva-

tives of the w variables. The variables are stored at the

vertices of a triangular mesh which is generated from a

prescribed distribution of points by Delaunay trinnKu-

lation [4]. Details of the spatial dlscretlzation using a

finite volume scheme and its relation to a plecewise-

linear finite element method may be found in [4].

The discretlzatlon of the" governing equations in

space leads to the following system of ordinary
differential equations:

dw

-- + R(w)= o (2)
dt

where R representsthe spatialdiscretlsatlonoperator,

or the residual,which vanishes at steady-stateand M

represents the mass matrix, which contains the infor-

mation relatingthe average value in a control volume

to the values at the vertices. Since we are only

interested here in steady state solutions, the mass

matrix can be replaced by the identity matrix yielding

dw

+ R(w) -_ 0 (3)
dt

Ifthe time derivativeisreplaced by:

dw w n+l n--W

- (4)
dt At

then an explicitscheme isobtained by evaluatingR(w)

at time leveln, and an implicitscheme by evaluating

R(w) at level n+l. In the lattercase, linearisingR

about time level n, one obtains:

I aR

( -- + -- ) BWl -----Rl
Bt aW

BWi= (W"+x - W")l

(5)

Eqn. (5) represents a large nonsymmetric linear system
of equations for the updates of the vector of unknowns

and needs to be solved at each time step. As 8t tends

to infinity, the method reduces to the standard
aR

Newton's method. The term _ symbolically
aw

represents the implicit side upon linearisation and

involves the Jacoblan matrices of the flux vectors. The

discretised convective fluxes are linearised exactly on

the left-hand side of the equation. Only a first order

accurate representation of the artificial dissipation
terms is employed in the linearlzatlon on the left hand

side. due to storage considerations. This results in the
aR

graph of the sparse matrix -- being identical to the
aW

graph of the supporting unstructured mesh (i.e. every
vertex in the matrix is connected only to its nearest

neighbors). The sparse matrix thus has a symmetric

structure, even though the matrix itself is not sym-

metric. Linearhation of the complete biharmonic dis-
sipative terms would result in a much denser matrix

with a different graph, since each vertex would also be

connected to its second to nearest neighbors. The

storage requirements for the representation of such a

matrix become prohibitive. The penalty in making
this approximation in the llnearization is that we can

never approach Newton's method (with its associated

quadratic convergence property) due to the mismatch

of the right and left hand side operators in Equ. (5).

The viscous fluxes are linearised with a few approxima-

tions. First, the laminar viscosities, which are com-

puted using Sutherland's law, are not linearlzed in the

energy equation, and the average quantities at the cell

centers are approximated as well. The validity of these

approximations has been established by solving a very

low Reynolds number laminar flow at very high CFL

numbers (non-dlmensionalized time steps). Second, the
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algebraicturbulencemodel,beingnondi_erentlabieis
not linearisedandis treatedexplicitly.

Sincethe linear systemis itself approximate
thereis little to begained by solving it to a great pre-

cision. To obtain favorable overall (nonlinear) conver-
gence, it has been found that it is better to solve the

linear problem to a moderate degree of precision and

proceed to the next time step. However, for stiff prob-

lems it may well be necessary to solve the linear prob-
lem well and one has the control to do so in the

present framework. The time step in Eqn. (5) is taken

to be inversely proportional to the Ls norm of the real-

dual. Since we have a mismatch of operators in Eqn.

(5), it is necessary to limit the mmdmum time step.

The system of linear equations is solved in the

present work by the GMP_S technique developed by

Sand and Schuits [12]. There is a host of iterative

methods for solving nonsymmetrlc linear systems. Each

of these methods has its own advantages but in the

present context we shall just employ one: GMRES.

Venkatakrishnan [10] compared the Chebychev semi-
iteration technique to GMRES for structured

problems and found GMRES to be marginally better.

Moreover, the choice of a particular iterative technique

is not as important as that of a good precondltioner;

and the better the precondltioner, the more computa-

tionally intensive it is, dlm_n;ml_,_g the relative impor-

tance of the iterative method. Without a good precon-
ditioner, most of these iterative methods fall to con-

verge for the kind of stiff problems which arise in com-

putational fluid dynamics.

The GM]tES technique is quite efficient for solv-

ing sparse nonsymmetric linear systems and is outlined

below. Let xo be an approximate solution of the system

A x + B : o (6)
where A is an invertible matrix. The solution is

advanced from xo to xk as

xk _ Xo-t-y k

GM]_S(k) finds the best possible solution for Yk over
1 k--1

the Krylov subspace < vaAvzA vz,....A v x > by
solving the _at|on problem

I Irkl I ---l_n T I Ivz+Ayl I

v x ---- A x0 + B , r k = A x k + B

GMRES procedure forms an orthogonal basis

vzvl. ..... v k (termed search directions) spanning the
Krylov subspace by a modified Gram-Schmidt method.

Storage is required to store these search directions. As

k increases, the storage increases linearly and the

number of operations, quadratically. To mitigate this,

Saad and Schultz also describe GMRES (k,m) which is

a restarted GMRES (k), where the k search directions

are discarded and recomputed every m cycles. GMr_S

can also be thought of as an optimal polynomial

acceleration scheme. Preconditioning greatly improves
the performance of GMRES as well as the other

related iterative methods. It decreases the size of the

spectrum so that the optimal polynomial generated by
GMRES can better annihilate the errors associated

with each elgenvalue.

PRECONDITIONING

Instead of Eqn. (6) the preconditioned iterative

methods solve the following systems:

PAx +P B = 0 (7)

A q (Q-' =) +B = 0 (s)

The systems of linear equations in Eqn. (7) and Eqn.

(8) are referred to respectively as, left preconditioned

and right preconditioned systems and P and Q as left

and right preconditioners. The role of the precondi-

tioner is to cluster the eigenvalues around unity. For

reasons given in [10] we shall just employ right precon-

ditioning. We have examined three preconditioners,

namely the incomplete LU factorisation, SSOR and

block diagonal. We will describe below the precondi-
tloners and the optimisations done to extract the best

vector performances out of them.

A simple choice is a block diagonal precondi-

tioner which computes the inverse of the 4x4 diagonal
block associated with a grid point. Good vectorisation

when using this preconditioner is easy to achieve by

unrolling the LU decomposition of the 4x4 diagonal
matrix as well as the forward and back solves over all

the grid points. A family of preconditioners arises out

of an incomplete LU factorisatlon and is referred to as

ILU(n). Here n represents the level of fill-in, n-----O

implies no fill-in beyond the original nonzero pattern.

In the present work ILU(O) is used since it is quite

robust and has lower storage requirements. It is also

possible to cast the symmetric successive over-

relaxation (SSOR) as a preconditioner as has been

shown by Saad [14]. Sand recommends setting the

relaxation factor to 1 when using SSOR as precondi-
tioner. In this case the SSOR preconditioner looks

exactly llke the ILU preconditioner, except that the

lower and the upper factors are read off directly from

the matrix A rather than by an incomplete factoriza-
tion. The incomplete factorisation is a nonvectorizable

procedure (although parallelizable by using wavefront

ordering described below) and SSOR preconditioning

dispenses with this sequential procedure. We will also

test ILU factorisation and SSOR as iterative techniques

by themselves for solving the linear sub-problems at
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eachtimestep.

DATA STRUCTURES

In this section we describe the data structures

and kernels employed which are critical in reducing

memory requirements and obtaining good performance.

In the course of the GIVlRES method with precondi-

tioning as per Eqn. (8) we need to address two kernels.

The first kernel is a sparse matrix - dense vector

multiply to compute A x. The most commonly used

data structures [15] are not ideal for this purpose since

they have poor vectorisation properties. The ITPA_

data structure, which allocates storage based on the

maximum number of nonseros in a row, is insi]_cient

for sparse matrices arising from unstructured grids,

because the degree of a vertex is arbitrary. The data

structure that we use for storing the sparse matrix A is

most easily explained by interpreting the underlying

triangular mesh as an undirected graph. Associated

with each edge are the two vertices, say nl and n2,

which are incident to the edge. The spatial discretisa-

tlon operator (the right hand side) utilises this data

structure and therefore, this information is already
available. We store the two 4x4 matrices which contain

the influence of n2 on nl (entry in row nl and column

n2 in A) and Ace versa. The diagonal blocks are stored

separately. With such a data structure, we can carry

out a matrix vector multiplication emclently by

employing a coloring algorithm to color the edges of

the original mesh to get vector performance. Note that

the data structure deals with blocks of 4x4 matrices;
for a scalar matrix the above mentioned data structure

is roughly equivalent to the coordinate storage scheme

[15]. However, since the graph of the sparse matrix is

equivalent to that of the supporting unstructured

mesh, the matrix is known to have a symmetric struc-

ture (although the matrix itself is not symmetric).
Hence, we achieve a savings with respect to the stan-

dard coordinate storage scheme by only storing the
coordinates of the upper half of the matri_

The second kernel deals with the effect of the

• . precondltloner Q on a vector. Q is D -1 for block diago

onal preconditioning and (L0) -1 for ILU/SSOR

preconditioning, where the " indicates approximate

factors. The block diagonal case is straight-forward in

this aspect and was discussed earlier. T_e ILU/SSOR

preconditloners require repeated solutions of sparse tri-

angular systems. By using a level scheduling (also

known as wavefront ordering) [18,17] it is possible to

obtain good vector performance. Under this permuta-
tion of the matrix, unknowns within a wavefront are

eliminated simultaneously. The key step in this pro-
cedure is an off-diagonal rectangular matrix - vector
multiply. This requires that L and U be stored in a

convenient form and we choose a data structure simi-

lar to that of A. In addition to the nonsero blocks and

the column numbers which are provided by the factori-

sation, we store the row numbers. With this additional

information, the data structure becomes similar to the

edge-i_ased data structure employed for the A matrix

except that we only store one block per edge. The off-

diagonal matrix vector multiply can then be vectorised

by interpreting the rectangular matrix as a dbected

graph and coloring the directed edges. The perfor-

mantes are further enhanced by performing all the

operations on blocks of size 4x4 since we arc dealing
with coupled systems.

The memory requirements for the present algo-
rithm are linear in n, the number of vertices. The

implicit scheme requires three arrays of size 7xlSn in

addition to a few Integer arrays of size n. One of these

arrays stores the matrix A In the edgs-bued data
structure, a second in the YSMP format which is _sult-

able for the factorisation and the third contains the

and the 0 factors. The factor 7 comes from having

3 times as many edges as vertices (valid for all 2-D tri-

ank_lar grids, neglecting boundary effects); we store
two blocks per edge plus the diagonal matrix for all

the vertices. The second array is reused for storing the

search directions in GMRES, permitting up to 27

search directions to be stored. Block diagonal precondi-

tioning dispenses with one of these arrays.

The ordering of unknowns has a bearing on the

convergence properties of many iterative methods. This
is true for iterative methods which involve a direc-

tional bias such as the SSOR/ILU preconditioning. For

structured meshes in [10,18] it was found that a
column-major ordering which _ed the

bandwidth (the emost locale ordering) yielded the best
convergence rates. For unstructured meshes we have

settled on the Reverse (_uthm-/vfckee _RC/vi) ordering

[15]. This is a standard ordering used in sparse direct

methods to reduce fill-in, but it also appears to be the

emost local s ordering. We have also tested orderings

based on coordinates of the vertices (sorting the ver-
tices by the x coordinates, y coordinates or some com-

bination of x and y coordinates). The R_-_[ ordering
gives marginally better convergence rates over a wide

range of problems. I_VI is also more e_clent in that

it creates fewer wavefronts, thus producing longer vec-
tors.

To achieve good overall vector performance,

careful attention aisoneeds to be paid to the assembly

of the matrix. In the present set-up, the matrix assem-

bly is performed by looping over the edges as far as

possible. This is euUy done for the inviscid fluxes and

the first order dissipative terms, but is quite involved

for the full viscous fluxes. 'vVe have found it expedient
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to assemblethe matrix for the viscous fluxes by loop-

ing over the triangles instead and coloring the triangles
to achieve vectorisation. The Jacobians are derived

analytically, but with some approximations for the
viscous terms as was discussed earlier.

RESULTS AND DISCUSSION

The iteratlve method outlined above requires a
few parameters. The start-up CFL number and the

maximum CFL number that can be used need to be

specified. It is also possible to freese the factorisation

after a few time steps (or after a prescribed reduction

in the residual) and increase the efficiency of the code,

since it eliminates the assembly and/or the factorisa-

tion of the matrix. This is an additional parameter.

G]V/RES requires a few parameters. It requires the

maximum number of search directions k, the number

of restart cycles m and a tolerance level which specifies
the desired order of reduction of the residual of the

linear sub-problem. The solution to the linear system is

terminated when the number of iterations exceeds the

specified maximum whether or not the tolerance cri-

terion is met. In all the problems, the tolerance is set
to 10 -s.

We first study a standard airfoil case, namely
invlscld flow over the ubiquitous NACAI}012 airfoil at

a freestream Mach number of 0.8 at 1.25 ° angle of
attack. The unstructured grld contains 4224 vertices or

8192 triangles. A close-up of the nearly uniform grid

is shown in Fig. la. The solution (not shown here)
agrees with standard results. We obtain llft, drag and

moment coefficients of 0.3523, 0.0228 and -0.0452

respectively. The convergence histories of five different

methods are shown in Fig. ib as a function of CPU

time. Since we are dealing with different methods
which require varying amounts of work at each time

step we believe that CPU time is the only true measure

for comparing them. Since there are quite a few

parameters involved in each of these methods, what we

have shown is the nbest" convergence history obtained

with each method. G/v/RES with ]LU preconditionin_
(GMRES/ILU) uses 5 search directions, CFL 20-10

and freezes the factorisation after 30 time steps.

GMRES/SSOR, wherein SSOR is used as the precondi-

tioner, employs 15 search directions, CFL 20-10 s and

freeses the matrix after 30 time steps. G_IRES/DIAG,

which uses block diagonal preconditioner, employs 25

search directions with 3 restarts, _'L 10.500,000 and

freezes the preconditioner after 25 time steps. The ILU
iteration uses CFL 1-50 and freezes the matrix after 25

steps. Final/y, the SSOR iteration uses _L 1-25 and

freezes the matrix after 30 time steps. Using multiple

ninner e sub-iterations with the ILU and the SSOR

iteration schemes in order to be able to use larger time

steps turns out be less efficient for this problem. The

number of time steps taken by GIVIRES/ILU,
GMRES/SSOR, GMRES/DIAG, ILU and SSOR are

75, I00, 75, 700 and 700 respectively. The parameters

given above for the five methods, we believe, are nearly

optimal for this problem and yield the best conver-

gence history for each of the methods. H_ving to

choose many parameters is a major drawback in using

iteratlve methods to solve the approximate linear sys-

tems arising from nonlinear problems. However, we

will be able to provide some guidelines for choosing

these parameters for the best of these methods, namely

GMP, ES/U.U, by solving a few more representative

problems. In Fig. lb, we notice that Gh/I_S/DIAG is
quite slow even for this simple problem, while ILU

iteration appears to be quite good. SSOR iteration and

G/vflIES/SSOR have simUar convergence histories.
SSOR as a preconditioner is not as effective as the ILU

preconditioner; GMRES/ILU appears to be the best of

all the methods. As we shall see, as the problems g:t

bigger and more stiff, GMRES/ILU performs much
better than the other four methods.

We next consider invlscid subcritlcal flow over a

4 element airfoil at a freestream Mach number of 0.2

and angle of attack of 5 ° . The triangular mesh

employed has 10395 vertices. The grid is shown in Fig.

2a. The solution is not shown here and may be found

in Mavriplis [4]. In Fig. 2b we present the convergence

histories of GMRES/ILU, GMI%ES/DIAG and ILU and

SSOR iteration. GI_tES/SSOR had great difficulties

in the initial stages and is not shown. G_S/ILU
converges much better than the other methods. The

parameters for GMR_S/ILU are 10 search directions

and CFL 20-10 s, the factorisation being frosen after 30

time steps. GIv_ES/DIAG employs 25 search direc-

tions with 2 restarts, C_'L 10.5x10 s and freeses the

preconditloner after 30 time steps. ILU iteration uses

_L 1-50, freeses the matrix after 50 time steps and
does not use sub-iterations. SSOR iteration uses CFL

0.5-5 and freeles the matrix after 100 time steps. The

number of time steps taken by GMRES/ILU,

GMRES/DIAG, ILU and SSOR are I00, 70, 400 and

400 respectively. SSOR, either by itself or as a precon-

ditioner, is clearly unsatisfactory.

We compare the performances of the methods on

a transonic turbulent flow over an _%E2822 airfoil,

referred to as Case 6. The flow conditions are _ ----
0.729, a ---- 2.31 ° and Reynolds number 6.5 x l0 s based

on the chord. The flow is computed on a mesh with

18751 vertices which contains cells in the boundary

layer and the wake region with aspects ratios up to

1000:1. The grid is shown in Fig. 3a. The pressure

plot and skin friction distribution and experimental

data are shown in Figs. 3b and 3c. The lift, drag and
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moment coefficients are 0.7342, 0.0182 and -0.0978.

Fig. 8d shows the convergence histories of the various

methods. We notice that only GMRES/ILU and

GIVIRES/DIAG converge, the latter doing so much

more slowly. G/vIRES/SSOR diverges for any reason-

able GFL numbers at all and its convergence history is

not shown. The parameters for GlVlRES/ILU are 25
search directions and _ 5-25000. We freese the fac-

torlsation after 80 time steps. We also freese the tur-

bulence model after nearly six orders of reduction in

the residual; otherwise, the residual hangs and the con-
vergence of the method slows down. The effect of frees-

ing the turbulence model in this fashion has minimal

effect on the aerodynamic coefBcients (less than 0.02_

change in llft coefficient). The parameters for

GMRES/DIAG are the same as for GIV[RES/ILU. The

number of time steps taken by both GMRES/ILU and

GMI_S/DIAG is 160. The unstructured multigrid

algorithm of Mawriplis [4] takes nearly 300 secs. on the

YMP to reduce the Ls norm of the residual to .3 x

10 -s and GlVlRES/ILU takes about 460 sees. to get to

the same level (7 orders of reduction in residual) for

this problem. In the full mnltlgrid algorithm, the prob-

lem is first solved on coarser grids, whereas
GMRES/ILU starts from freestream conditions on the

fine grid. The 1LU and SSOR iterations use 10 sub-

iterations, CFL .5-9.6 and still do not converge after
200 time steps.

The final case computed is turbulent flow over a

four-element airfoil computed on an adapted grid with

48691 vertices. The grid and a does-up view near the

leading edge are shown in Figs. 4a and 4b. The flow

conditions are _ -- 0.1996, ¢_ -" 16.02 ° and Reynolds
number of 1.187x i0 s. The convergence histories with

and without freezing the turbulence model are shown

in Fig. 4c as a function of the CPU time. The number

of time steps taken is 400. The mnltigrid algorithm
takes 2100 sees. to reduce the residual to 1.79 x 10 -s

while GMRES/ILU takes about 2000 sees. to reach the

same stage (five orders of reduction of the residual).
The computed ]Vinch contours for this case are shown

in Fig. 4d, illustrating the complexity of this flow. In

Fig. 4e the computed surface pressure distribution is
compared with experimental wind-tunnel data.

In summary, we have found that for invlscid

flows 5.10 search directions are usually su_cient

whereas the turbulent viscous cases require 26 search

directions with GMRES/ILU. The start-up CFL

number is usually about 20 for inviecid problems and
about 6 for turbulent viscous cases and the CFL

number is allowed to increase up to 500-60000 fold.

We use non-restarted GMRES whenever possible,
which eliminates one of the parameters and is better

suited for stiff problems (see [12]). The G/v_ES/ILU

runs at about 90-120 MFlops on the Cray YMP (unl-

processor) at the NAS facility, with performance

improving as the problems get larger.

CONCLUSIONS

We have compared five candidate implicit

methods for solving the compressible Nsvier-Stokes

equations. For inviscid problems, with a small number

of vertices and low cell aspect ratios, many of the

methods work well, GMRES with ILU preconditioning

performing the best. For larger problems, especially st

high Reynolds numbers, almost all the methods except

for GMRES/ILU converge extremely slowly, if at all.
Not surprisingly, SSOR, either an an iteration or as a

preconditioner, suffers dramatically as the problem

increases in she or in the degree of complexity.
G/vtRES/ILU is quite competitive with the unstruc-

tured mnltlgrld algorithm, while eliminating the need

for independent coarse grids to be generated. It does,

however, incur a larger memory overhead than the

multlgrid algorithm. Even though these methods have

been compared for a particular spatial dlscretisation,
we believe the trends should hold for other dlscretisa-

tions as welL We have carried out a number of optim-
isations to extract the best vector performances out of

all these methods. Finally, the turbulence model itself

appears to inhibit convergence in the latter stages.

This needs further investigation and perhaps incor-

porating a field equation model with proper lineariza-

tlon would solve the problem.
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Fig. 2a. Grid for 4 element airfoil - 10395 ver-
ticu

Fi_. 3a. Grid for the RAg2822 airfoil - 13751
vertices
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Fig. 2b Convergence Eistorlea for flow over the 4

element airfoil- M= ---- 0.2, a = 5°
Fig. 3b. Surface pressure profile for Case 6 -

RAE2822 airfoil M= = 0.729, a = 2.37, °, Re =
6.5x10 s
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Fig. 4b. Close-up of the grid near the leading
edge
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